Multimode Silicon Nanowire Transistors

نویسندگان

  • Sebastian Glassner
  • Clemens Zeiner
  • Priyanka Periwal
  • Thierry Baron
  • Emmerich Bertagnolli
  • Alois Lugstein
چکیده

The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 10(4) is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 10(7) whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording

In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on ...

متن کامل

Performance evaluation of ballistic silicon nanowire transistors with atomic-basis dispersion relations

Performance evaluation of ballistic silicon nanowire transistors with atomic-basis dispersion relations" (2005).

متن کامل

Phonon-assisted ballistic to diffusive crossover in silicon nanowire transistors

As transistors get smaller, the simulations require full quantum-mechanical treatments. Most such approaches have treated the transport as ballistic, ignoring the scattering that is known to occur in such devices. We present the results of a three-dimensional, self-consistent quantum simulation of a silicon nanowire transistor. In these simulations we have included phonon scattering through a r...

متن کامل

A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors

In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, tri...

متن کامل

Investigation of the Performance of Carbon Nanotube and Silicon Nanowire Junctionless Transistors using First–Principle Calculations

In this work, we present atomic scale simulation of junctionless semiconducting single–walled carbon nanotubes field effect transistors (CNT–FETs) and compare their performance to silicon nanowire (SiNW) transistors with similar dimensions. The energy dispersions relations for p–type SiNW and CNT are compared. The response of the transistors to source–drain bias and gate voltage is explored. Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014